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  Akoostix continues to experiment with flexible, low-processing-load marine mammal detection options suitable for 
implementation in both workstations and low-power embedded systems. Building on previous work, additional processing
stages have been added to normalize and de-noise spectrograms using a wide variety of user-configurable options. These 
pre-processing options can be optimized for the signals of interest, which enhances targets while significantly reducing the
impact of structured noise that cause false alarms with other methods. Band-limited signal excess is then computed using
one of several weighting functions, after which detection is performed on the signal excess time series. Out-of-band tests
are also performed to ensure band-limited signals. The detector is tested on the workshop Minke whale localization
dataset with configurations of varying complexity and performance (detection and processing load) are compared to other 
detection algorithms.
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1 INTRODUCTION  
Passive acoustic monitoring (PAM) can be used as a non-invasive technique for determining the 
presence of marine mammals based on detection of their vocalizations. PAM provides researchers the 
ability to monitor marine mammals in situations where traditional visual surveys are difficult to conduct 
or when the results obtained from visual surveys are not adequate [1]. However, PAM often results in 
large volumes of data that can be inefficient to analyze manually, and therefore the development of 
efficient and effective methods of vocalization detection is important for successful implementation of 
marine mammal mitigation measures involving PAM. Methods for automated detection of marine 
mammal vocalizations are actively being developed to improve the ability to accurately process large 
quantities of acoustic data in a timely manner. 
 
Developing a general marine mammal vocalization detector presents a difficult problem as vocalizations 
vary substantially between species, which is further complicated by dynamic, non-Gaussian noise 
levels in the ocean [2]. These dynamic characteristics of background noise as well as interference from 
anthropogenic signals, such as shipping noise, may cause false-positive detections during real-time 
PAM, such as for mitigation during military and seismic activities. False alarms may result in 
unnecessary stoppages of these activities, which is often expensive and time consuming. False 
detection rates can be decreased by increasing detection thresholds, which may also result in missed 
detections, or by applying higher-order filtering, which reduces the generality, increases the cost, and 
increases complexity in configuring and operating the system. 
 
There has been significant advancement in the optimization of automated marine mammal detection 
algorithms in recent years. The optimal method for known signal detection in white noise is a matched 
filter. This method has been adapted for marine mammal detection by applying synthetic matched 
filtering, where a synthetic vocalization is developed and correlated against an acoustic dataset [3].  
Spectrogram correlation, which follows a similar approach using spectrogram signal kernels, has been 
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successful in right whale detection [4]. A spectrogram approach with additional filtering using impulsive 
noise kernels and feature extraction has also been applied to right whale data [5]. These approaches 
require significant a priori information and predictable signal characteristics and thus may not be 
suitable for dynamic situations involving multiple species, such as during real-time PAM. When general 
detection is required and discrimination between similar signals is not a priority, band-limited summed 
energy methods may be appropriate. 
 
For maximum efficiency, human operators should be able to adjust a PAM detector with basic training. 
An effective PAM detector should also have a high probability of signal detection and low false-alarm 
rate, be robust across many signal types, and require a low-processing load allowing scalability to 
multiple platforms. Considering these constraints, this study examines several detection processing 
streams based on band-limited spectral energy. The objective was to minimize false alarms without 
significantly increasing the complexity of the system. A generalized detection-processing stream 
developed by Akoostix Inc. and Defense Research and Development Canada (DRDC) is presented. 
Processing streams of varying complexity designed to detect minke whale (Balaenoptera acutorostrata) 
vocalizations were applied to a dataset with manually identified minke whale vocalizations, a dataset 
consisting of only shipping noise, and a dataset with vocalizations of other species present.  
 
2 GENERALIZED BAND-LIMITED DETECTION  
To aid in analysis of large PAM data sets, as well as development of PAM processing for Autonomous 
Underwater Vehicles (AUV) [6], a generalized low-power band-limited detector has been developed 
(Figure 1). Each stage in the processing stream is described in the sections below.  

 
 

Figure 1: Block diagram of a general band-limited energy detector. 

2.1 Spectrogram Processing 

The first stage of the band-limited detection processing stream generates a spectrogram from acoustic 
time-series data using a fast Fourier transform (FFT) to form the series of spectra, . Each 
spectrogram is generated using overlapping Hann-shaded windows, with a power-of-two window size 
that provides a spectral resolution that best matches the short-time bandwidth of the signal of interest. 
Windows should typically be overlapped by 50% - 75% of the window size, which helps to reduce signal 
splitting between time frames.  
 
2.2 Spectrogram Normalization 

The spectral data may then be passed to an optional spectral processing stage, which acts to normalize 
the background level and enhance the signal of interest. The normalization method depends on the 
signal characteristics and available processing power. For band-limited signals, such as moans, 
squeals, or songs, a background estimate taken across each spectrum can be used to filter broadband 
signals by dividing each spectral bin by the background estimate. The detector streams presented 
make use of a block average background estimate and a sliding median background estimate. The 
median is a more expensive operation, but can be configured so that large signal energy does not bias 
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the background estimate. The window used for the median calculation should be at least twice the 
short-time bandwidth of the signal to avoid a self-polluted background estimate. 
 
2.3 Spectral Integration 

Time-series data, , are generated by integrating spectra between user-defined band limits. 
Overlapping spectral sub-bands are used to limit signal energy splitting between adjacent bands. The 
integration is performed using one of three algorithms, which are described below. 
 
  
2.3.1 Energy Summation 

Energy summation is the simplest integration method, which generates a time-series for each band by 
summing the energy contained in each spectral bin: 

  
(1) 

2.3.2 Entropy 

The entropy algorithm, first applied to marine-mammal detection by Erbe [7], uses band-limited 
Shannon entropy to form the time-series data. First, each spectral band is normalized to unit energy: 

 

  (2) 

This normalization stage is equivalent to a block average spectral normalization with window equal to 
the number of spectral bins in the band of interest.  
The information entropy is then calculated:  

 
  (3) 

The entropy calculation acts to increase the contribution of higher energy spectral bins when forming 
the output time-series. 
  
2.3.3 Power law 

Following a similar approach to entropy summation, a power law detector raises each spectral value to 
a user-defined power before summing the spectrum [8]. Spectral bins with higher energy are given 
more weight in the summation by applying an n-th order power law: 

 
  (4) 

The power law approach provides a similar effect as an entropy sum while using less processing 
power, as logarithms are a computationally expensive operation. 
 
2.4 Likelihood Test 

The final stage in the detection stream tests the likelihood that the target signal is present. The simple 
test uses an estimated background level from  to assess the detection likelihood. A gapped-split 
window then generates estimates in three different sized windows: 
 A total window of length : 

 

  (5) 
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 A signal window of length : 

  

(6) 

 And a gap window of length : 

 

  (7) 

To assess the likelihood that the target signal is contained in , a detection function, , is 
formed using the mean signal-to-noise ratio, where the noise term is determined by subtracting the gap 
window level from the total window: 

 

  (8) 

Or a mean signal-noise difference for time-series generated from power law or entropy algorithms: 

 
  (9) 

The signal window size should be set to approximately the same length as the signal duration that 
contains the majority of the energy. The gap-window size should be at least the duration of the target 
signal, ensuring that the noise estimate is not biased if there is signal present. The total window size 
should be set so that it provides a statistically relevant measurement for the background, but is short 
enough that neighbouring signals will not interfere. Figure 2 illustrates the three windows.  A threshold, 
δ is used to determine detection whenever . The threshold can be set based on sensitivity 
requirements of the particular situation. 

 
Figure 2:  Gapped split windows. The signal window is used for the signal estimate, and the noise 

estimate is calculated by subtracting the gap window from the total window. 

3  METHODOLOGY 

3.1 Data Sets 

A dataset that contained central minke whale vocalizations collected with seven hydrophones off the 
island of Kaua’i, Hawaii was provided as part of a 2011 workshop [9]. This dataset was manually 
analyzed and identified minke whale boings were annotated. The boings were annotated and reviewed 
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by two analysts to increase confidence in the identified vocalizations. The data set also contained 
similar, interfering vocalizations from other species, such as humpback whales [10].  In total, 210 
minutes of acoustic data were analyzed and 268 boings were annotated.  
 
In order to test detector robustness against false detections caused by ship noise, a dataset collected 
during a Defence Research and Development Canada (DRDC) sea trial in Exuma Sound, Bahamas 
was selected. The dataset contained 250 minutes of loud intermittent shipping noise recorded on 
sonobuoys. No marine mammal vocalizations were present on these recordings. 
 
Robustness against detections caused by interfering vocalizations was tested using a dataset collected 
in the Gully submarine canyon south of Nova Scotia in the summer of 2011. This dataset was collected 
over the course of four days (27 May – 30 May 2011) using a combination of sonobuoy, towed array, 
and passive acoustic reusable buoys (PARB). This dataset was dense with delphinid clicks and 
squeals, as well as sensor related noises, but did not contain any minke whale vocalizations. In total, 
the Gully data contained approximately 90 hours of acoustic recording. 
 
3.2 Detector Configuration 

Detector streams were configured for detection of central-Pacific minke-whale boing vocalizations. 
These minke whale boing vocalizations range from 1.0 seconds to 4.0 seconds in duration and include 
frequencies from approximately 1 kHz to 10 kHz, although the dominate energy is normally between 1.3 
kHz and 1.5 kHz [9],[11]. This vocalization consists of an initial burst-pulse, followed by frequency 
modulation that transitions into a constant frequency tail. The parameters for each detection stream are 
defined in Table 1. 

 
Table 1: Detection stream configurations for central Pacific Minke boing vocalization 

Detector Stream FFT duration [s]* Spectral 
normalization 

Integration 
algorithm 

Integration 
band [Hz]** 

Detector 
window sizes 
[s] 

Energy 1.5 None Energy summation 1200-1600 

 
Normalized 
energy 

1.5 100 Hz sliding 
median window 

Energy summation 1200-1600 

 
Entropy 1.5 Block average Entropy 1200-1600 

 
Power law 1.5 Block average*** Power law, power 

of 2 
1200-1600 

 
*An overlap of 75% was used for each FFT frame 
**The integration band was divided into 100 Hz sub-bands with 20 Hz overlap 
***Also tested with median normalization, but results did not differ significantly. Chosen to match entropy normalization. 
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3.3 Detection Performance 

The automated detection streams described in Section 3.2 were used to detect whale vocalizations on 
the minke whale dataset. The automated detections were compared to manually identified vocalizations 
using receiver-operator-characteristic (ROC) analysis [12], which compares automated detections 
generated by varying threshold sensitivities to manually annotated vocalizations (e.g. Figure 3). 
 
Detections that occurred at times that overlap manual annotations were considered true positives, while 
detections falling outside of manual annotations were considered false alarms. As the detection 
sensitivity was decreased, the false alarm rate decreased at the cost of missed positive detections. The 
percentage of manual annotations that contain auto-detections was plotted against a false alarm rate, 
and the best performance was considered the curve nearest to a unit step function (eg. 100% 
probability of correct detection and zero false alarms). The detector streams were tested on the two 
datasets without minke whale vocalizations, and false alarm rates corresponding to 50%, 75%, and 
90% probability of correct detection were compared.  
 

 
Figure 3: Example of two annotated minke whale boings from the minke whale dataset. 

4 RESULTS 

The ROC curves (Figure 4) show that the entropy and power law streams performed best on the minke 
whale dataset. The energy bands detection stream performed the poorest as it yielded the highest false 
alarm rate for a given probability of correct detection. The false alarm rate for each data set (Table 2-
Table 4) shows that detection streams with spectral normalization (entropy, power law, normalized 
energy bands) were very robust against shipping noise, generating zero false detections with a 
threshold corresponding to 75% probability of correct detection. At high sensitivity settings, the 
performance of the normalized energy band detector surpassed the power law in some instances. This 
is demonstrated by the curves crossing at approximately 95% probability of correct detection, and the 
lower false alarm rate at 90% probability of correct detection on the Gully data (Table 4). 
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Figure 4: ROC curves generated from the minke whale dataset. 

Table 2: False alarm rates [count/hour] for probability of correct detection of 50%. 

Detection Stream  Minke whale Shipping noise Gully 
Energy bands 10.85 0 70.74 

Normalized energy bands 1.14 0 0.38 
Power law 1.14 0 0.07 

Entropy 1.14  0 0.11 
 
 

Table 3: False alarm rates [count/hour] for probability of correct detection of 75%. 

Detection Stream  Minke whale Shipping noise Gully 
Energy bands 36.00  21.83 293.99 

Normalized energy bands 4.57 0 3.70 
Power law 2.00 0 1.87  

Entropy 2.28  0 0.9 
 

Table 4: False alarm rates [count/hour] for probability of correct detection of 90%. 

Detection Stream  Minke whale Shipping noise Gully 
Energy bands 137.45 235.93 684.67 

Normalized energy bands 21.14 0 13.24 
Power law 10.85 0 26.11 

Entropy 11.14 3.52 7.93 
 

5 DISCUSSION 
The results can be compared to [10], which used a similar minke whale dataset to test an optimized 
spectrogram contour detector. At 75% probability of correct detection, the contour detector showed a 
false detection rate of approximately one false alarm for every 9 minutes of data, or 6.67 false 
detections per hour. This is comparable to the results presented in Table 3. The contour detector is 
more complex and requires additional user input, but also provides spectral classification information in 
the output. 
 
The largest performance gain came from the spectral normalization stage of the detector. This is 
demonstrated by the large detection performance improvement between the energy band and 
normalized energy band detector (Table 2-4), as spectral normalization is the only stage that differs 
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between the two streams. Normalizing across each individual spectrum acts to remove high-energy 
broadband signals, whereas time-based spectrogram normalization methods, e.g. exponential 
averaging, will emphasize any transient signal. When spectral normalization was configured for minke 
whale boings, the detector was robust against false alarms caused by both shipping noise and other 
vocalization types (such as clicks produced by delphinids). It should be noted that as the bandwidth of 
the signal increases, the effect of normalizing across each spectrum will diminish, and thus this 
approach should not be used for detection of broadband signals such as clicks. Time-based 
normalization would be more effective for clicks. 
 
Using power law and entropy spectral integration algorithms showed additional detection improvement 
(Tables 2-4). The performance gain would occur for lower-SNR signals where the peak energy is 
contained in fewer bins, causing the signal to be obfuscated during simple energy summation. Since 
these algorithms increase the contribution of higher-energy bins, the bins containing signal had more 
influence during summation, thus allowing for detection to be triggered. The entropy and power law 
algorithms showed a similar performance, but the entropy calculation was computationally more 
intensive. Using 500 000 records of 1024-element summations to test performance loading, an  
calculation used 20% of the processing load required for an  calculation. Future work to examine 
higher-order weighting factors is required to determine optimal performance. 
 
The general detector described would improve the efficiency of both real-time PAM and post-analysis of 
acoustic data. A single operator, who could be cued by the auto-detections, would be capable of 
monitoring multiple sensors in real-time. The detector can also be used to extract presence/absence 
information from large datasets, improving the efficiency of PAM-based research. For example, using a 
threshold corresponding to 75% probability of detection, the absence of minke whale boings in the 90 
hour Gully data set, which was dense with cetacean vocalizations, could be determined by assessing 
just 81 false detections. 
 
6 CONCLUSION 

An approach to detecting marine mammals acoustically using an automated vocalization detector has 
been presented. User-configurable signal-processing streams were used to test the approach for 
detection of central minke whale boings and robustness against false detection. Normalization across 
each spectrum showed significant improvements in detection performance of band-limited signals, 
while applying functions such as power law and entropy during integration of each spectrum showed 
additional performance gain over a simple energy summation. The detector was shown to be robust 
against false detection from both shipping noise and vocalizations produced by other species. 
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